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In lattice-dynamical calculations, especially of crystallographic temperature factors and thermodynamic 
functions, a considerable saving of computing time can be obtained by a suitable choice and sampling 
of the first Brillouin zone. To this purpose, an uneven sampling is proposed and examples of its advan- 
tages are given. For a convenient use of this sampling, 'unconventional' Brillouin zones are adopted: 
in most cases, simplifications due to crystal symmetry can be made. 

Introduction 

In applications of lattice dynamics to crystallographic 
problems, especially in connection with evaluation of 
B tensors and thermodynamic functions, an important 
problem concerns appropriate sampling of the Bril- 
louin zone. We have proposed an uneven sampling 
(Gramaccioli, Simonetta & Suffritti, 1973; Filippini, 
Gramaccioli, Simonetta & Suffritti, 1975) which allows 
a considerable saving of computing time. A detailed 
description of our procedure is presented here. 

Temperature factors and the Brillouin zone 

According to a procedure which assumes a Bose-Ein- 
stein statistical distribution (Pawley, 1967; Willis & 
Prior, 1975), the B tensors for each atom k can be 
evaluated as: 

Bij(k) = ~ ~(k)~ j(k)e(~o)/Nmk c°z ( 1 ) 

where the ~'s are the components relative to atom k 
of the normalized latent vectors of the dynamical ma- 
trix, co is the angular frequency of the normal mode, 
me is the mass of the atom and e(o~) is the average 
energy of the mode: 

e(co) =hv[{½+ [exp (hv / kT) -  11-1}. (2) 

The summation (1) is extended to Npoints  in a Brillouin 
zone. For 'rigid' molecules, the tensors T, L ( =  ¢o) and S 
(Cruickshank, 1956; Schomaker & Trueblood, 1968) 
can be derived in a similar way: 

T l j ( p )  = ~rh(WI j(p)e(oJ)] NmpcO z (3) 

L~j(,)= ~(,(p)(j(1,)e(co)/N/Jt--~v)Ij(p)o~ 2 (4) 

S~i(p)= ~_fl~(p)(j(p)e(og)/NmpV'I-~(p, °92 (5) 

where the r/'s are the real and imaginary coefficients of 
the latent vectors relative to translation of molecule p 
and the ~'s are relative to rotation of the same mole- 
cule. Here mp is.the mass of molecule p and I , ; )  o r  lj(p) 
are the corresponding principal moments of inertia. 

Some inconvenience may be met in the use of the 
above expressions. The contribution tends to infinity 
for a value of co approaching zero, as happens in all 
crystals for acoustic branches (the greatest inconven- 
ience concerns translational motion). 

On the other hand, the values of B tensors (and T) 
are finite in practice because the number of modes for 
q--> 0 tends rapidly to zero; however, the method of 
carrying out the summation (1), which can also be ex- 
pressed as an integral, has to be chosen with some 
caution. 

In some works of this kind, the problem is solved 
by taking into account a considerable number of points 
('thick sampling') in the Brillouin zone. This makes the 
summations in (1) and (3-5) close to an integral and 
also allows for the possibility of neglecting trouble- 
some points (such as q = 0), because of their very lim- 
ited number with respect to the total. However, a 
procedure of this kind, in order to be acceptable, 
necessarily implies a huge amount of calculation, which 
limits application of lattice-dynamical procedures to 
crystallographic problems. 

'Uneven sampling' 

If a function is relatively 'smooth' ,  the approximation 
of its integral by a summation becomes quite ac- 
ceptable, even with a 'gross' sampling, whereas, close 
to steep maxima and minima the sampling must be as 
thick as possible: such a situation can be explained if 
one considers a Taylor expansion of the function to be 
integrated-and the influence of higher derivatives. 

This suggests that close to q = 0 a particularly 'thick' 
sampling of the Brillouin zone is necessary, but not 
away from the origin, since (at least for physically 
significant cases) no other point corresponds to zero 
frequency. This is also evident if one considers the 
nature of phonon dispersion curves. 

• Accordingly, we developed the idea of an 'uneven' 
sampling of the Brillouin zone. In order to account for 
the disparity in size of the intervals, a weight is assigned 
proportional to the extension of the interval surround- 
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ing a 'sampled' point. A simple scheme of this way of 
sampling, as applied in our calculations (Filippini, 
Gramaccioli, Simonetta & Suffritti, 1973, 1974a, b, 
1975), is the following: each reciprocal axis is divided 
into unequal intervals (Figs. 1, 2), following a certain 
progression. Such a progression can be used either for 
establishing directly the sampled points, or for estab- 
lishing intervals: in the first case, interval borders are 
taken as equidistant from adjacent points, whereas 
in the second the sampled points are taken as equi- 
distant from adjacent borders [cases (a) and (b) in 
Fig. t]. For lower symmetries, when it is necessary to 
sample both positive and negative values along one 
reciprocal axis (Table 2), we take points and intervals 
symmetric with respect to the origin. 

Fig. 2 shows the procedure for a two-dimensional 
case: the weight corresponding to each interval is 
proportional to the product of weights corresponding 
to axes, i.e. to the area (or to the volume in the three- 
dimensional case) of the dashed zones. 

An important point is establishing the minimum 
number of points to be sampled. This can be done by 
comparing the results obtained from various samplings 
with different 'thickness'. Another question concerns 
the nature of the function to be used in establishing the 
progression for sampling intervals. In other words, if 
increasing the number of points does not involve ap- 
preciable variation in the results (especially tempera- 
ture factors), the number taken can be as small as 
possible. 

In Fig. 3 the results relating to some components of 
the T tensor for 1,6:8,13-butane-l,4-diylidene[14] an- 
nulene are reported. Each line relates to results ob- 
tained for the same component of T, using the same 
progression formula (A,B,C,D),  with a different 
number n of points per reciprocal axis in the asymme- 
tric part of the Brillouin zone (the same conditions have 
been assumed for all parameters in these calculations); 
in other words, extrapolating the lines to 1In --> 0 gives 
a plausible value for convergence, i.e. for the value ob- 
tained with a practically infinite number of sampled 
points in the Brillouin zone. In this figure, formula A 
corresponds to an 'even' sampling (Axe=constant); B 
is proportional to the progression Ax~=n~/2; C to 
zlxg=[nZ/(3+n2)] ~/3, and D to LJx~=ni. In all these 
formulae, n~ = 1,2, 3 . . .  etc. 

The convergence limit is the same for all the lines 
of the same Tu; the rapidity of convergence, however, 
is not the same. This can be seen by comparing the 
distance from the limiting value (dashed) for the same 
number of sampled points, i.e. for equal abscissae. For 
instance, the results obtained with C with only four 
points per axis are comparable or even better than 
results obtained from a 'regular' (evenly spaced) 
sampling with 32 points per axis, i.e. an uneven 
sampling with only 43=64 points in the asymmetric 
unit is comparable with a 'regular' sampling of 323= 
32768 points; the saving of computing time is accord- 
ingly very considerable. A similar situation occurs for 
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axes for sampling the Brillouin zone (see text). 
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Fig. 2. Two-dimens ional  sampling, as derived f rom applica- 
t ion of  case (b) (Fig. 1) to two reciprocal  axes; the results 
of  calculat ions relative to each point  are weighted propor-  
tionally to the su r rounding  area. 
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Fig. 3. Some calculated values of  componen t s  of  the T tensor  
for 1,6: 8,13-butane- 1,4-diylidene[1 4]annulene,  obta ined for  
Brillouin zone sampling of  different thickness. Each line 
connects  results relative to the same progression fo rmula :  
A corresponds  to an 'even'  sampling (zJxl=cons tant ) ,  B is 
propor t ional  to the progression dx~=n] ~z, C to Axt= 
[n]/(3+n])] In, and D to Ax,=n,. These formulae  are ap- 
plied as for case (a) in Fig. 1 (A, B, C) or for  case (b) (for- 
mula  D). The values (,~,z) have been multiplied by 10 4. 
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other compounds, such as anthracene or perdeutero- 
naphthalene, and gives us confidence in the generality 
of our results. For instance, Fig. 4 shows the eigen- 
values of the T tensor in anthracene: these values, ob- 
tained with C for only four points per axis, are already 
very near to the limiting value, whereas the regular 
sampling should be carried out with a much greater 
number of points in order to obtain results of compar- 
able significance. 

Evaluation of  thermodynamic functions 

A similar situation occurs in evaluating thermody- 
namic functions. For instance, the value of the logarithm 
of the vibrational partition function Z is given by: 

In Z =  ~ g(v~) In [1 - e x p  ( -hv j / kT)]Av j  (6) 

where g(vj) is the density of states for frequency vj. 
Inspection of (6) shows that for q--* 0 the logarithm 
corresponding to acoustic branches tends to infinity; 
accordingly, one may expect to encounter problems. 

In a previous article (Filippini et aL, 1975) this prob- 
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Fig. 4. Eigenvalues of calculated T tensors for anthracene 
(x 104 A2). In this figure, the lettering A-C has the same 
meaning as in Fig. 3. Here, since the sampling is made for 
both positive and negative regions of the a* axis (see Table 
2), along this axis we actually have 2n points. 

lem has already been considered (see for instance 
Table 2 of the mentioned work, where values of the T 
tensor and thermodynamic functions for naphthalene 
derived with a different sampling of the Brillouin zone 
are shown). In spite of the large variation in T, the 
results for specific heat, entropy and free energy do not 
seem to vary significantly, even with widely different 
ways of sampling: that the situation had to be better, 
as for T's (or B's), is also clear if the nature of (1) or 
(3) is compared with (6). 

On the other hand, one might expect the computed 
value of Z to be affected by the channel width used in 
building up the density of states. For instance, the first 
interval (v ~ 0) contains several frequencies, whose con- 
tributions to Z are calculated later on, referring to the 
average value of the channel; these contributions may 
however be almost all grouped near v=0,  and the 
actual contribution to Z may be different. 

In order to test the validity of our procedure, a cal- 
culation of free energy was carried out for solid c~- 
nitrogen; the results are given in Table 1. 

We see that the agreement between the various 
results corresponding to more or less thick sampling 
is quite good, as for naphthalene. Moreover, the com- 
parison between values of free energy calculated with 
a channel width of 2 cm -1, which is our usual proce- 
dure, and 'directly' (i.e. accumulating contributions 
relative to partition functions due to each single fre- 
quency) supports the validity of our calculations. 

Symmetry  of  the Bril louin zone 

Some difficulties regarding 'uneven' sampling concern 
the correct application of symmetry. A review of the 
problem of symmetry for the Brillouin zone is given by 
Schnepp & Jacobi (1972); here, however, we are not 
greatly interested in determining specially symmetrical 
points and a much simpler treatment is sufficient. 

Complete exploration of the Brillouin zone is un- 
necessary, because the results proper to q"=qMk,  
where Mk is a rotation matrix of the crystal symmetry 
group, can be derived from results proper to q. In fact, 
for a certain value of the wave vector q, the contribu- 
tion to the temperature factors or thermodynamic func- 
tions of a molecule related to the 'original' molecule E 
by a rotation MR is the same as the contribution relative 
to E for q " = q M ,  (all these contributions are relative 
to the principal axes of each molecule): a simple 
demonstration is given in Appendix I. 

Table 1. Values o f  some thermodynamic functions for 0~-N 2 at 20 K and 0 atm, as obtained 
from different Brillouin zone sampling, or density o f  states accumulation procedure 

Number of points Gibbs free energy (cal mol -I) Entropy 
per reciprocal axis* 'direct' 2"0 cm -1 channel (cal mo1-1 K -1) 

4 89.490 89.496 2.619 
7 89.486 89-474 2.610 

10 89.485 89.482 2.614 

* A sequence following C, as represented in Fig. 3, has been used. 

Specific heat co 
(cal mol- 1 K - ') 

4.92 
4.92 
4.92 
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Consequen t ly ,  it is sufficient to refer to the ' a symme-  
tr ic  uni t '  o f  the  Bri l louin zone,  add ing  up for  each 
value of  q all con t r ibu t ions  co r r e spond ing  to sym- 
metr ica l ly  re la ted molecules  in the uni t  cell, as shown  
by  Pawley  (1967). 

However ,  whereas  for  pr imit ive  uni t  cells it is pos- 
sible to hand le  mat te rs  so tha t  the choice of  the ' a sym-  
metr ic '  pa r t  o f  the Bri l louin zone is easy, for  uneven 
sampl ing  in non-pr imi t ive  cells the p rob lem m a y  be- 
come more  complex.  

In  order  to obviate  this  difficulty, t ak ing  accoun t  o f  
the  relat ive arb i t rar iness  of  def ining a Bri l louin zone, 
our  procedure  refers to ' unconven t iona l '  zones,  chosen  
so tha t  the i r  surfaces are paral le l  to pr inc ipal  planes 
(Figs. 5, 6); no  effort has  been m a d e  to provide  for 
some propert ies ,  such as keeping  l imi t ing surfaces as 
close as possible to the origin,  because this is unneces-  
sary for  our  purpose .  Our  choice also br ings abou t  a 
cons iderable  s implif icat ion in der iving the asymmet r i c  
un i t  direct ly f rom space-group opera t ions  (Table  2). 

F o r  some cases, our  Bri l louin zones are no t  the mos t  
sa t isfactory.  F o r  instance,  for  Laue g roup  m 3 m  the 
sampl ing  proceeds as for  a t e t ragona l  crystal  if  the  
lat t ice is non-pr imi t ive ;  for  Laue  g roup  m3, the 
sampl ing  proceeds  as for  an  o r t h o r h o m b i c  crystal .  

However ,  in spite of  this  inconvenience,  which  in- 
volves a waste of  c o m p u t i n g  t ime by a fac tor  of  two 
or  four,  this  is the  only  p rocedure  as far  as we k n o w  
which  permi ts  ' uneven '  sampl ing,  and  the advan tages  
o f  this  k ind  of  sampl ing  more  than  compensa t e  the 
d isadvantages .  

W h e n  the molecule  is in a special posi t ion,  the results 
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Fig. 5. Unconventional primitive reciprocal unit cell (con- 
tinuous lines) used for deriving the Brillouin zone for body- 
centred lattices. The reciprocal axes define the non-primi- 
tive reciprocal cell, the dashed lines show the corresponding 
'standard' primitive reciprocal cell. The Brillouin zone cor- 
responds to this unit cell by shifting the origin to the centre 
of the zone and multiplying the sides by 2zr. 
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Fig. 6. Unconventional primitive unit-cell (continuous lines) 
used for deriving the Brillouin zone for C-centred lattices; 
dashed and continuous lines have the same meaning as in 
Fig. 5. 

Tab le  2. Br i l l ou in - zone  s a m p l i n g  l imi t s  f o r  d i f f eren t  s y m m e t r y  g r o u p s  

If the lattice is non-primitive, limits are referred to a non-primitive reciprocal cell. 

Laue group Primitive lattices 
i a* _ b* +_ c* _+ 

2/m a* +_ b* + c* + 

mmm a* + b* + c* + 

a* + b* - c* + 
(hexagonal axes) 

(hexagonal axes) 
space groups as P'3ml 

~m 
(hexagonal axes) 

space groups as P ~ l m  
4/m and 6/m 

4/rnmm and 6/mmm 

m3 

m3m 

a* + b* + c* + ] 

a* + b* - c* + 

a* + b* + c* + 
a* + b* + c* + 

a*>b* (if a* =b* weight=½) 
a* + b* + c* + 

a* _> b*, c* >__ b* 
(if a*=b* or b*=c* weight=½, 
if a* = b* = c* weight = k) 

a* + b* + c* + 
a* > b*, c* > b*, a* <_ c* 
(if a*=b* or a*=c* weight=½, 
if a* = b* = c* weight = ~) 

Non-primitive lattices 

A a* + b* + 2c* + 
C 2a* + b* + c* + 
C 2a* + b* + c*+ 

or a* + 2b* + c* + 
I as C 
F a* + 2b* + 2c* + ,  or similar 

If R-centred refer to rhombohedral axes and 
a* _ b* + c* + 

(a* > b*, c*>_ b* etc. as for m3) 

If R-centred refer to rhombohedral axes and 
a* + b* + c* + 

* > * a *  c *  (a* >b*, c _ b , < etc. as for m3m) 

If/-centred as for P with 2c* instead of c* 

If non-primitive as for mmm 

If non-primitive as for 4/mmm 
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as shown in Table 4 of Schomaker & Trueblood (1968) 
can be derived: a short and simple way to demonstrate 
this is given in Appendix II. 

In other words, when the molecule is in a crystal- 
lographic symmetrical (special) position, our procedure 
refers to two symmetry groups. The former includes 
all the symmetry operations of the crystal and is used 
for finding the asymmetric unit of the Brillouin zone; 
the latter includes only 'intermolecular' symmetry 
operations and is used for building up the dynamical 
matrices. 

If intramolecular symmetry is present, at the end of 
our calcalations the tensors T, L and S, as obtained 
directly from summation along the 'asymmetric'  part 
of the Brillouin zone are transformed according to (13) 
and added up. 

An example showing this procedure is given for 
adamantane (Table 3): our computer program is fully 
automated for this purpose, and the results do not 
require considerations specific to each particular case. 

APPENDIX I 
' A s y m m e t r i c  un i t '  o f  t h e  B r i l l o u i n  z o n e  

Let us consider an 'original' molecule E and another 
molecule Ek, related to E through the kth operation of 
symmetry: 

x' = Mkx + tk (7) 

where Mk is the rotation matrix and t k the translation 
vector relative to this kth operation. The elements of 
the dynamical matrix M are essentially of the form 

• ~j(k,k') exp [iqAr(k,k')] (8) 

where ~ i ( k ,  k') is a component of a force constant tensor 
relative to interaction between molecules Ek and Ek,, 
and Ar is the vector distance between these molecules; 
the summation (8) is extended to all molecules related 
to each other by translation. The reference system for 
~ j ( k , k ' )  consists of principal axes for each molecule 
Ek and Ek,. 

Table 3. Procedure to evaluate TL,  S tensors for  adamantane (low-temperature fo rm;  
data f r o m  Nordman & Schmitkons, 1 965) 

Space group P212~e; Point group 212m; Laue group 4/mmm 
Symmetry operations (as 'equivalent positions'): 

x,y,z; --x, --y,z; y, --x, --z; --y,x, --z; ½--x,½+Y, ½--z; ½+x,½--Y,½--z; ½+Y,½+x,½+z; ½--Y,½--x,½+z 

Intermolecular operations (lst subgroup = m): 
x,y,z; used for building up dynamical 
½-x ,½+Y,½-z  matrices (12x 12) 

Intramolecular operations (2nd subgroup =2[): 
x,y,z; - x ,  - y , z ;  - y , x ,  - z ;  y, - x ,  - z  

Sampling of the Brillouin zone: 
x*,y*,z* only positive 
x* >y* (if x = y  weight =0.5) 

Evaluation of T, L, S tensors: [l ] [ 1  ] 
T= T .  + T~,+ T~;+ Tii '= T~ + T~+ T3 + T . = E T , E +  - 1 T ,  - 1 

+1 +1 

where 

---- T1 + I"21 T22 - -  T23 "[- 
-- T3, -- 7"32 T33 -~ 

Similarly: 

where 

S = S I +  

[i -1 !] [° l i ]  [Z 01 i] [i 1 i] + T1 - + - T1 0 
0 -  0 0 - 0 -  0 -  r::l 0] 

7"12 rlx + -- 7"12 Tt, - r,~/= T~, 0o 
/'32 T3~ T33_1 T~, - T3~ T33.1 0 T3~ 

T~I = 2(Tit + T22) 
T;3=4T33 

L =  L;~ 0. 
0 L33 

s:: [si: i] s2, s ~  - s ~ q  + / s ~  - - s ~ / +  s , ,  - s . .  s l [ ]  -- - s ; ~  
- -  S31 - -  532 S ~ J  L $32 - -  Sal - -  $33J S32 S31 0 

S 11 = 2($11 - S22) 
° 2 $12= (Si2 +$21). 

The situation is accordingly the same as in Schomaker & Trueblood (1968): see Table 3 of that paper for molecules lying in 
positions of symmetry 2[. 
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If such a reference system is used, around the mol- 
ecule Ek, for reasons of symmetry, an array of force 
constants identical with molecule E is present. How- 
ever, in building up the dynamical matrix, a certain 
force constant ~ j ,  identical for molecules E and Ek, 
multiplies a different exponential, since Ar '=MkAr,  
where Ar' is the distance between Ek and its neighbour 
symmetrically related to Ar. 

In case q ' = q M F  ~, the exponentials become equal 
for molecule E (with wave vector q) and Ek (with wave 
vector q'), and the situation for both molecules, with 
different wave vectors, becomes indeed identical; all 
this becomes clear if the 'building up' of the dynamical 
matrix as specified by Pawley (1972) is kept in mind. 
In particular, the contribution to B tensors, as referred 
to the particular system of each molecule, is the same. 
Using a short notation, we may write: 

BEk, o,=BE, q ( q ' = q M ~  -1) (9) 

where, in the above notation, Btk,~ indicates the cor-  
tribution to the B tensor of a given atom of molecule 
Ek, for a certain value q of the wave vector. 

Since the above relationship is valid for any value 
of q, for q " = q M k  it will be: 

Beg, a . . . .  Be,~,, (q'" = q"M~- ~). (10) 

Now, since q"' = q " M ~  ~ = qMkM~ ~ = q, we have: 

Bek, q=BE, q,, , (11) 

i.e. the contribution to temperature factors of atoms 
belonging to the E molecule for q " = q M k  is the same 
as for molecule Ek with wave vector q. This limits 
sampling of the Brillouin zone to an 'asymmetric unit' 
consisting of points not related to each other by rota- 
tion matrices Mk belonging to the crystal symmetry 
group. This is in line with the 'usual' symmetry proper- 
ties of a reciprocal lattice. 

APPENDIX II 
Special  position of a molecule 

When a molecule is in a special position, it consists of 
two or more physically equivalent parts. If parts of the 
same molecule are related by the rotation matrix Mk, 
each force constant will have at least one 'symmetrical' 
counterpart, which will be used in building up the dyn- 
amical matrix. These ~tj  will multiply a different ex- 
ponential, since Ar '=MkAr,  as in Appendix I. For 
q ' = q M F  ~ the dynamical matrix should become iden- 
tical with the dynamical matrix relative to q, provided 
the reference system of the molecule is changed by 
taking a symmetrically related system (Fig. 7). 

For instance, let us suppose the molecule to have 
two (crystallographic) symmetrical parts, related to 
each other by the symmetry operation Mk. We have: 

T=TI~+T2~; L = L l i + L 2 i ;  S=81~+S2i (12) 

where TI~ is the contribution to the molecular tensor 
T for a certain value of the wave vector q; T2~ is the 

B" Z'tZ 

\ il / .  
\x\ ~ / / /  

• / / 

~ -  

Fig. 7. If the molecule has a plane of symmetry, the interac- 
tions (here indicated by arrows) between symmetrically cor- 
responding atoms A or A' and B or B' are the same, provided 
they are referred to symmetrically related reference systems. 

contribution to T for q '=qM~ -1, etc.; the summation 
(12) is extended to one-half of the Brillouin zone. 

For the reasons given above (Appendix I) Tit(q)= 
T2~(qMF1), etc.; here Tli and T2t are related to different 
reference systems, i.e. to the ones pertinent to each 
half of the molecule. Referring now to the same system 
as for TI~, the tensors T2~,L2i, Sa are transformed as 
follows: 

T2i = MkT2iM~ = MkT1 iMk r 

L2t r r = MkL2iMk = MkLliMk 
S;, - r -- MkIMkIS2iMk =MkIMklS l iM~.  (13) 

A practical application of this procedure is given in 
Table 3; in these expressions, the prime symbol indic- 
ates reference to the system of T~i, i.e. the one of the 
J]rst part of the molecule. 
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